fon
Кафедра прикладных компетенций в области цифровых технологий
О кафедре
Cкорость научно-технологического прогресса и исчезновение определенных видов деятельности, связанное с проникновением автоматизации во все сферы производственных и управленческих процессов, являются факторами возможного роста для предприятий будущего. Цифровая интеграция, объединяющая научные направления, кадры, процессы, пользователей и данные, будет создавать условия для научно-технических достижений и прорывов, обеспечивая научно-экономические сдвиги в смежных отраслях и, прежде всего, на глобальном минерально-сырьевом рынке. В этой связи с целью обучения, исследований и разработок в области цифровых технологий для предприятий минерально-сырьевого и топливно-энергетического комплексов в Горном университете реализуется деятельность Кафедры прикладных компетенций в области цифровых технологий.
Подробнее о задачах
point
Направления научных исследований
Данное направление предполагает рассмотрение интеллектуальных технологий управления электроэнергетическими системами, включая передачу электрической энергии, управление спросом на электрическую энергию, цифровые двойники объектов электроэнергетики, цифровые информационные модели электротехнических систем.
Читать далее   Лаборатория  
detail
 
В рамках данного направления ведется разработка новых методов мониторинга и управления на основе цифровых и информационных технологий, создание информационных систем для решения задач горной отрасли.
Читать далее   Лаборатория  
detail
 
Данное направление нацелено на развитие и популяризацию инженерного образования, повышение цифровых компетенций сотрудников и обучающихся, а также реализацию программ дополнительного профессионального образования для представителей компаний ТЭК и МСК.
Читать далее   Лаборатория  
detail
 
Данное направление предполагает исследование и обоснование комплексных показателей эффективности генерации, транспорта и потребления энергии при снабжении от традиционных и возобновляемых источников энергии с учетом влияния глобальных вызовов и вариации внешних факторов.
Читать далее   Лаборатория  
detail
 
В рамках данного направления проводятся исследования, направленные на повышение эффективности оборудования и технологических процессов добычи, переработки и транспортировки полезных ископаемых.
Читать далее   Лаборатория  
detail
 
Проекты
Научные публикации

DEM simulation of the jaw crusher with complex motion jaws

Ключевые слова:Breakage parameters | Calibration | DEM | Jaw crusher | Numerical modeling | Rocky DEM
Дата публикации: 2019-01-01
Журнал: IMPC 2018 - 29th International Mineral Processing Congress
Авторы: Feoktistov, A.J, Iusupov, G.A, Beloglazov, I.I.

Аннотация
The aim of this paper is to study the numerical modeling of the crushing process in a jaw crusher with complex motion jaws using Discrete Element Method (DEM). The main goals are to ensure the conformity of numerical simulation results to the experimental data, optimize the operating modes and the crusher design and develop automated verification and calibration methodology. It is offered to use automated selection of mathematical model parameters using large- or laboratory-scale experiments instead of deriving parameters from conventional intensive material tests (e.g. drop-weight test). Experimental data were obtained from a large-scale crusher designed and manufactured by the company “Mekhanobr-Tekhnika”. Both jaws have their drive shafts located asymmetrically; one jaw is driven in the upper part, the second at the base. The crushing process involves fragmentation of single smoothed rectangular granite particles of the same weight. During the experiment, the required parameters such as particle size distribution were obtained for further computer simulations. Based on the obtained experimental data, the Rocky DEM model was built. Simulation breakage parameters were calibrated using automated parameter selection methodology based on multiple set of parameter-controlled simulations. A good correlation of the experimental data and numerical simulation data was obtained. The methodology in combination with well-known capabilities of simulation modeling will help reduce the research time in the development of new mineral processing equipment.

Production Process Data as a Tool for Digital Transformation of Metallurgical Companies

Ключевые слова:BigData | Correlation coefficient | Data analysis | Data preprocessing | Digitalisation | Production statistics
Дата публикации: 2022-01-01
Журнал: Lecture Notes in Networks and Systems
Авторы: Stoianova, A, Vasilyeva, N.
ISSN:23673389

Q4

(Scimago)

Big Data analysis is becoming an everyday task for companies all over the world, including Russian companies. Due to advances in technology and the reduction in the cost of storage systems, companies can now collect and store large volumes of heterogeneous data. The important step of extracting knowledge and value from such data is a challenge that will eventually be met by all companies seeking to maintain their competitiveness and place in the market. However, companies face several challenges when it comes to collecting, pre-processing, and integrating data into cohesive data sets designed to deliver analytics. In this article, the above problems and possible solutions are illustrated using the example of cleaning, integration, and normalization of data obtained in the measurement of indicators for the Vanyukov melting furnace process. The article considers an approach to the study of metallurgical processes using the analysis of large operational control data sets. Standard methods of processing the data sets of operational process control are used. The correlation analysis of the main process parameters is carried out. The results are interpreted for their further practical application.
publications

Evaluation of bulk material behavior control method in technological units using dem. Part 2

Ключевые слова:Bulk materials | Classification of motion modes | DEM-modeling | LSTM | Neural networks | Pelletizing drums | RNN
Дата публикации: 2020-01-01
Журнал: CIS Iron and Steel Review
Авторы: Boikov, A.V, Savelev, R.V, Payor, V.A, Potapov, A.V.
ISSN:24141089

Q1

(Scimago)

The research is dedicated to the development of special devices (capsules) that can be used to control the mining ore behavior in the technological unit in order to increase processes efficiency. In the first part of the article, the choice of the discrete element method for gen-erating various particle trajectories in the unit (drum pelletizer) was substantiated. This part describes the specific technologies that were used to recognize the pelletizing mode. In par-ticular, conversation of paths to sensor readings is implemented using the Matlab Sensor Fusion and Tracking Toolbox. The obtained readings were processed using two neural network classifiers (DNN and LSTM). As a result, stable models for recognizing the pelletizing modes of the unit were obtained. LSTM recognition accuracy is greater than DNN. The developed approach can be used to recognize the operating modes of other technological units. In addition, data on particles trajectories can be used to improve DEM models of technological processes. Future work consists of the capsule physical implementation and testing the recognition algorithm on a real unit.
Все публикации  
Отзывы партнёров
"Together with the Educational Center of Digital Technologies at St. Petersburg Mining University, we have been collaborating for several years to shape fundamental and applied challenges and ideas for the digitalisation of the mining industry."
"We are very glad to be part of the process that the Educational Center of Digital Technologies at St. Petersburg Mining University is engaged in. We are confident that this centre can become an assembly point for all those new solutions that will bring the mining industry to a new level."
The Committee for the Fuel and Energy Complex of the Leningrad Region expresses its gratitude to you for your support in holding the Festival and organising an informative exposition of the enterprise aimed at attracting the young generation to the fuel and energy complex profession.
Thanks to your efforts, we will be able to further educate young people full of strength and aspirations for knowledge and creativity in the field of energy saving.
We hope for further fruitful co-operation in the field of energy saving.
On behalf of the Ministry of Energy of Russia, we would like to express our gratitude to the WeWatt team of young researchers for the great and necessary work for the industry, done under your leadership on a proactive and pro bono basis.
The results of this study will serve as a basis for further work in this area and will be useful to coal companies in carrying out digital transformation of production facilities, contributing to the effective and successful achievement of the goal.
Institute for Problems of Integrated Subsoil Development, Dmitry Klebanov
Leonid Zhukov, Director of SITECH Division of Zeppelin Rusland Ltd.
Committee for Fuel and Energy Complex, Chairman of the Committee Y.V. Andreev
Ministry of Energy of the Russian Federation
 
 
reviews
Партнеры

Для улучшения работы сайта и его взаимодействия с пользователями мы используем файлы cookie. Продолжая работу с сайтом, Вы разрешаете использование cookie-файлов. Вы всегда можете отключить файлы cookie в настройках Вашего браузера.