Cкорость научно-технологического прогресса и исчезновение определенных видов деятельности, связанное с проникновением автоматизации во все сферы производственных и управленческих процессов, являются факторами возможного роста для предприятий будущего. Цифровая интеграция, объединяющая научные направления, кадры, процессы, пользователей и данные, будет создавать условия для научно-технических достижений и прорывов, обеспечивая научно-экономические сдвиги в смежных отраслях и, прежде всего, на глобальном минерально-сырьевом рынке. В этой связи с целью обучения, исследований и разработок в области цифровых технологий для предприятий минерально-сырьевого и топливно-энергетического комплексов в Горном университете реализуется деятельность Кафедры прикладных компетенций в области цифровых технологий.
Подробнее о задачах
Направления научных исследований
Исследование эффективного развития и функционирования энергетических систем на новой технологической основе, принципах энергосбережения, современной электротехнике, ВИЭ
Теория и методология информационного обеспечения объектов недропользования
Создание системы непрерывного обучения и повышения квалификации, направленной на формирование профессиональных цифровых компетенций специалистов, необходимых для обеспечения инновационного развития ТЭК и МСК
Энергосбережение и повышение энергетической эффективности
Переход к передовым цифровым, интеллектуальным производственным технологиям, роботизированным системам на предприятиях МСК и ТЭК
Данное направление предполагает рассмотрение интеллектуальных технологий управления электроэнергетическими системами, включая передачу электрической энергии, управление спросом на электрическую энергию, цифровые двойники объектов электроэнергетики, цифровые информационные модели электротехнических систем.
Читать далее
Лаборатория
В рамках данного направления ведется разработка новых методов мониторинга и управления на основе цифровых и информационных технологий, создание информационных систем для решения задач горной отрасли.
Читать далее
Лаборатория
Данное направление нацелено на развитие и популяризацию инженерного образования, повышение цифровых компетенций сотрудников и обучающихся, а также реализацию программ дополнительного профессионального образования для представителей компаний ТЭК и МСК.
Читать далее
Лаборатория
Данное направление предполагает исследование и обоснование комплексных показателей эффективности генерации, транспорта и потребления энергии при снабжении от традиционных и возобновляемых источников энергии с учетом влияния глобальных вызовов и вариации внешних факторов.
Читать далее
Лаборатория
В рамках данного направления проводятся исследования, направленные на повышение эффективности оборудования и технологических процессов добычи, переработки и транспортировки полезных ископаемых.
Читать далее
Лаборатория
Проекты
Научные публикации
Identification of the technical condition of induction motor groups by the total energy flow
Ключевые слова:Classification algorithm | Current harmonic distortion factor | Induction electric motor | Simulation model | The coefficient of electromagnetic momentum ripple
Дата публикации: 2021-10-01
Журнал: Energies
Авторы: Koteleva, N.I, Korolev, N.A, Zhukovskiy, Y.L.
ISSN:19961073
Q2
(Scimago)
The paper discusses the method of identifying the technical condition of induction motors by classifying the energy data coming from the main common power bus. The work shows the simulation results of induction motor operation. The correlation between occurring defects and current diagrams is presented. The developed simulation model is demonstrated. The general algorithm for conducting experiments is described. Five different experiments to develop an algorithm for the classification are conducted: determination of the motors number in operation with different power; determination of the motors number in operation with equal power; determination of the mode and load of induction electric motor; determination of the fault and its magnitude with regard to operation and load of induction motor; determination of the fault and its magnitude with regard to operation and load of induction motor with regard to non-linear load in the flow. The article also presents an algorithm for preprocessing data to solve the classification problem. In addition, the classification results are shown and recommendations for testing and using the classification algorithm on a real object are made.
Modeling of heavy-oil flow with regard to their rheological properties
Ключевые слова:ANSYS | Flow model | Heavy oil | Oil-field pipeline | Rheology
Дата публикации: 2021-01-01
Журнал: Energies
Авторы: Beloglazov, I, Morenov, V, Leusheva, E, Gudmestad, O.T.
ISSN:19961073
Q2
(Scimago)
With the depletion of traditional energy resources, the share of heavy-oil production has been increasing recently. According to some estimates, their reserves account for 80% of the world's oil resources. Costs for extraction of heavy oil and natural bitumen are 3-4 times higher than the costs of extracting light oil, which is due not only to higher density and viscosity indicators but also to insufficient development of equipment and technologies for the extraction, transportation, and processing of such oils. Currently, a single pipeline system is used to pump both light and heavy oil. Therefore, it is necessary to take into account the features of the heavy-oil pumping mode. This paper presents mathematical models of heavy-oil flow in oil-field pipelines. The rheological properties of several heavy-oil samples were determined by experiments. The dependencies obtained were used as input data for a simulation model using computational fluid dynamics (CFD) methods. The modeling condition investigates the range of shear rates up to 300 s−1. At the same time, results up to 30 s−1 are considered in the developed computational models. The methodology of the research is, thus, based on a CFD approach with experimental confirmation of the results obtained. The proposed rheological flow model for heavy oil reflects the dynamics of the internal structural transformation during petroleum transportation. The validity of the model is confirmed by a comparison between the theoretical and the obtained experimental results. The results of the conducted research can be considered during the selection of heavy-oil treatment techniques for its efficient transportation.
Development of an algorithm for regulating the load schedule of educational institutions based on the forecast of electric consumption within the framework of application of the demand response
Ключевые слова:Big data | Demand response | Digital technologies | Energy efficiency | Energy saving | Internet of things | Machine learning
Дата публикации: 2021-12-01
Журнал: Sustainability (Switzerland)
Авторы: Zhukovskiy, Y.L, Kovalchuk, M.S, Batueva, D.E, Senchilo, N.D.
ISSN:20711050
Q1
(Scimago)
There is a tendency to increase the use of demand response technology in the Russian Federation along with other developing countries, covering not only large industries, but also individual households and organizations. Reducing peak loads of electricity consumption and increasing energy efficient use of equipment in the power system is achieved by applying demand management technology based on modeling and predicting consumer behavior in an educational institution. The study proposes to consider the possibility of participating in the concept of demand management of educational institutions with a typical workload schedule of the work week. For the study, statistical data of open services and sources, Russian and foreign research on the use of digital and information technologies, analytical methods, methods of mathematical modeling, methods of analysis, and generalization of data and statistical methods of data processing are used. An algorithm for collecting and processing power consumption data and a load planning algorithm were developed, including all levels of interaction between devices. A comparison was made between the values of the maximum daily consumption before and after optimization, as well as the magnitude of the decrease in the maximum consumption after applying the genetic algorithm. The developed algorithm has the ability to scale, which will increase the effect of using the results of this study to more significant values. Load switching helps to reduce peak consumption charges, which often represent a significant portion of the electricity cost.
Отзывы партнёров
"Together with the Educational Center of Digital Technologies at St. Petersburg Mining University, we have been collaborating for several years to shape fundamental and applied challenges and ideas for the digitalisation of the mining industry."
"We are very glad to be part of the process that the Educational Center of Digital Technologies at St. Petersburg Mining University is engaged in. We are confident that this centre can become an assembly point for all those new solutions that will bring the mining industry to a new level."
The Committee for the Fuel and Energy Complex of the Leningrad Region expresses its gratitude to you for your support in holding the Festival and organising an informative exposition of the enterprise aimed at attracting the young generation to the fuel and energy complex profession.
Thanks to your efforts, we will be able to further educate young people full of strength and aspirations for knowledge and creativity in the field of energy saving.
We hope for further fruitful co-operation in the field of energy saving.
Thanks to your efforts, we will be able to further educate young people full of strength and aspirations for knowledge and creativity in the field of energy saving.
We hope for further fruitful co-operation in the field of energy saving.
On behalf of the Ministry of Energy of Russia, we would like to express our gratitude to the WeWatt team of young researchers for the great and necessary work for the industry, done under your leadership on a proactive and pro bono basis.
The results of this study will serve as a basis for further work in this area and will be useful to coal companies in carrying out digital transformation of production facilities, contributing to the effective and successful achievement of the goal.
The results of this study will serve as a basis for further work in this area and will be useful to coal companies in carrying out digital transformation of production facilities, contributing to the effective and successful achievement of the goal.
Institute for Problems of Integrated Subsoil Development, Dmitry Klebanov
Leonid Zhukov, Director of SITECH Division of Zeppelin Rusland Ltd.
Committee for Fuel and Energy Complex, Chairman of the Committee Y.V. Andreev
Ministry of Energy of the Russian Federation
Кафедра в лицах

Николайчук Любовь Анатольевна
Заведующая кафедрой прикладных компетенций в области цифровых технологий
к.э.н. / доцент

Королёв Николай Александрович
доцент, руководитель направления энергетических и электромеханических систем
к.т.н.

Чупин Станислав Александрович
доцент, руководитель направления компьютерного моделирования
к.т.н.

Булдыско Александра Дмитриевна
ассистент
к.т.н.

Сержан Сергей Леонидович
доцент, руководитель направления горно-транспортных систем
к.т.н.
Обратная связь







