fon
Educational Center of Digital Technologies
About center
The speed of scientific and technological progress and the disappearance of certain activities associated with the penetration of automation into all areas of production and management processes are factors of possible growth for enterprises of the future. Digital integration, which integrates scientific directions, people, processes, users and data, will create the conditions for scientific and technological advances and breakthroughs, enabling scientific and economic shifts in related industries and, above all, in the global mineral market. In this regard, in 2018, for the purpose of training, research and development in the field of digital technologies for the enterprises of mineral and fuel and energy complexes, the "Educational Center of Digital Technologies" was established at the Mining University.
Learn more about tasks
point
Directions of scientific research
This direction implies the consideration of intellectual technologies of electric power systems management, including electric power transmission, electric power demand management, digital twins of electric power facilities, digital information models of electrical engineering systems.
Read more   Laboratory  
detail
 
Within the framework of this direction, new methods of monitoring and management based on digital and information technologies are being developed, and information systems are being created to solve mining industry problems.
Read more   Laboratory  
detail
 
This direction is aimed at the development and popularisation of engineering education, improvement of digital competencies of employees and students, as well as implementation of additional professional education programmes for representatives of fuel and energy complex companies.
Read more   Laboratory  
detail
 
This direction implies research and substantiation of complex indicators of efficiency of energy generation, transport and consumption when supplied from traditional and renewable energy sources, taking into account the impact of global challenges and variation of external factors.
Read more   Laboratory  
detail
 
Within the framework of this direction, research is carried out aimed at improving the efficiency of equipment and technological processes of mining, processing and transporting minerals.
Read more   Laboratory  
detail
 
Scientific publications
publications

Investigation of the effectiveness of an augmented reality and a dynamic simulation system collaboration in oil pump maintenance

Keywords:Augmented reality | Digitalization | Dynamic simulation | Maintenance | Oil pump
Date of publication: 2022-01-01
Journal: Applied Sciences (Switzerland)
Authors: Koteleva, N, Valnev, V, Frenkel, I.
ISSN:20763417

Q2

(Scimago)

The maintenance of oil pumps is a complex task for any operating organization, and for an industrial enterprise in the oil and gas sector of the economy, this issue has a high degree of urgency. One of the reasons for this is a wide spread of pumping equipment in all areas of oil and gas enterprises. At the same time, an aggressive environment, uneven load, remote facilities, and harsh climatic zones (especially in the areas of the Arctic region or production platforms) are factors that make it relevant to develop special systems that help or simplify the maintenance of pumping equipment. Dynamic modeling is one of the modern technologies which allows for solving the urgent issue of assessing the technical condition of equipment. It is the basis of systems that carry out diagnostics and prognostic calculations and allow for assessing the dynamic state of objects under various conditions of their operation, among other functions. Augmented reality technology is a technology that allows for reducing the time for equipment maintenance by reducing the time for searching and processing various information required in the maintenance process. This paper presents an investigation of the effectiveness of an augmented reality and a dynamic simulation system collaboration in oil pump maintenance. Since there is insufficient research on the joint application of these two technologies, the urgent issue is to prove the effectiveness of such collaboration. For this purpose, this paper provides a description of the system structure, gives a description of the development process of the augmented reality system application and tests the application using Microsoft HoloLens 2.
publications

Determining the Rational Immersion Depth of a Mining Complex Capsule for Underwater Mining of Ferromanganese Nodules

Keywords:a capsule | a mathematical model | ferromanganese nodules | mining complex | the optimal immersion depth
Date of publication: 2016-01-01
Journal: Procedia Engineering
Authors: Serzhan, S.L.
ISSN:18777058

The article discusses the extraction of solid mineral resources (SMR) from the bottom, such as ferromanganese nodules (FMN) and cobalt-manganese crusts (CMC), occurring in both offshore and deep regions of the World Ocean. For separating and lifting the water surface is used mining complex, which includes a hydraulically dragheads and intermediate capsule with atmospheric pressure introduced into the of extraction process in order to increase energy efficiency through the organization of a two-stage hydroascent, the first stage is carried out by external hydrostatic pressure. To determine the optimum depth of immersion of the intermediate capsule composed mathematical model. It is based on the sustainable hydroascent provided at the first stage transport (from the bottom to capsule), and reducing power consumption slurry pump performing the second stage transport (from the capsule to the sea surface). In determining the rational immersion depth were taken into account design features of slurry pipeline, mine geological parameters, the parameters of extracted minerals, performance of dragheads, the slurry flow parameters, such as concentration, consistency, density. Presents an example calculation and determined the optimal capsule insertion depth for offshore geological environments.

Augmented reality system and maintenance of electromechanical equipment in industrial production

Date of publication: 2019-01-01
Journal: Youth Technical Sessions Proceedings- Proceedings of the 6th Youth Forum of the World Petroleum Council- Future Leaders Forum, 2019
Authors: Koteleva, N, Bekenev, K, Valnev, V.

The oil&gas enterprises have their own safety concerns list. Poor maintenance of equipment is one of the top safety concerns for many enterprises. There are a lot of methods of increasing of safety, but its shouldn’t be used alone. A complex approach and addition the modern technologies in safety ensuring make possible not only increase the quality but increase the efficiently of production. There are a lot of kinds of quality improving of maintenance of electromechanical equipment, one of them are the augmented reality system. This is a new technology and there are no methods and effective estimation for developing and using this technology in industrial production. Developing the special unified modules of augmented reality for maintenance of electromechanical equipment is the actual task. The aim of this research-to identify possible uses, to estimate the effectiveness in ensuring the safety of production and to develop a way of integrating into typical process control systems of the augmented reality system for maintenance of electromechanical equipment.
All publications  
Partner reviews
"Together with the Educational Center of Digital Technologies at St. Petersburg Mining University, we have been collaborating for several years to shape fundamental and applied challenges and ideas for the digitalisation of the mining industry."
"We are very glad to be part of the process that the Educational Center of Digital Technologies at St. Petersburg Mining University is engaged in. We are confident that this centre can become an assembly point for all those new solutions that will bring the mining industry to a new level."
The Committee for the Fuel and Energy Complex of the Leningrad Region expresses its gratitude to you for your support in holding the Festival and organising an informative exposition of the enterprise aimed at attracting the young generation to the fuel and energy complex profession.
Thanks to your efforts, we will be able to further educate young people full of strength and aspirations for knowledge and creativity in the field of energy saving.
We hope for further fruitful co-operation in the field of energy saving.
On behalf of the Ministry of Energy of Russia, we would like to express our gratitude to the WeWatt team of young researchers for the great and necessary work for the industry, done under your leadership on a proactive and pro bono basis.
The results of this study will serve as a basis for further work in this area and will be useful to coal companies in carrying out digital transformation of production facilities, contributing to the effective and successful achievement of the goal.
Institute for Problems of Integrated Subsoil Development, Dmitry Klebanov
Leonid Zhukov, Director of SITECH Division of Zeppelin Rusland Ltd.
Committee for Fuel and Energy Complex, Chairman of the Committee Y.V. Andreev
Ministry of Energy of the Russian Federation
 
 
reviews

Для улучшения работы сайта и его взаимодействия с пользователями мы используем файлы cookie. Продолжая работу с сайтом, Вы разрешаете использование cookie-файлов. Вы всегда можете отключить файлы cookie в настройках Вашего браузера.