fon
Educational Center of Digital Technologies
About center
The speed of scientific and technological progress and the disappearance of certain activities associated with the penetration of automation into all areas of production and management processes are factors of possible growth for enterprises of the future. Digital integration, which integrates scientific directions, people, processes, users and data, will create the conditions for scientific and technological advances and breakthroughs, enabling scientific and economic shifts in related industries and, above all, in the global mineral market. In this regard, in 2018, for the purpose of training, research and development in the field of digital technologies for the enterprises of mineral and fuel and energy complexes, the "Educational Center of Digital Technologies" was established at the Mining University.
Learn more about tasks
point
Directions of scientific research
This direction implies the consideration of intellectual technologies of electric power systems management, including electric power transmission, electric power demand management, digital twins of electric power facilities, digital information models of electrical engineering systems.
Read more   Laboratory  
detail
 
Within the framework of this direction, new methods of monitoring and management based on digital and information technologies are being developed, and information systems are being created to solve mining industry problems.
Read more   Laboratory  
detail
 
This direction is aimed at the development and popularisation of engineering education, improvement of digital competencies of employees and students, as well as implementation of additional professional education programmes for representatives of fuel and energy complex companies.
Read more   Laboratory  
detail
 
This direction implies research and substantiation of complex indicators of efficiency of energy generation, transport and consumption when supplied from traditional and renewable energy sources, taking into account the impact of global challenges and variation of external factors.
Read more   Laboratory  
detail
 
Within the framework of this direction, research is carried out aimed at improving the efficiency of equipment and technological processes of mining, processing and transporting minerals.
Read more   Laboratory  
detail
 
Scientific publications
publications

Investigation of the effectiveness of an augmented reality and a dynamic simulation system collaboration in oil pump maintenance

Keywords:Augmented reality | Digitalization | Dynamic simulation | Maintenance | Oil pump
Date of publication: 2022-01-01
Journal: Applied Sciences (Switzerland)
Authors: Koteleva, N, Valnev, V, Frenkel, I.
ISSN:20763417

Q2

(Scimago)

The maintenance of oil pumps is a complex task for any operating organization, and for an industrial enterprise in the oil and gas sector of the economy, this issue has a high degree of urgency. One of the reasons for this is a wide spread of pumping equipment in all areas of oil and gas enterprises. At the same time, an aggressive environment, uneven load, remote facilities, and harsh climatic zones (especially in the areas of the Arctic region or production platforms) are factors that make it relevant to develop special systems that help or simplify the maintenance of pumping equipment. Dynamic modeling is one of the modern technologies which allows for solving the urgent issue of assessing the technical condition of equipment. It is the basis of systems that carry out diagnostics and prognostic calculations and allow for assessing the dynamic state of objects under various conditions of their operation, among other functions. Augmented reality technology is a technology that allows for reducing the time for equipment maintenance by reducing the time for searching and processing various information required in the maintenance process. This paper presents an investigation of the effectiveness of an augmented reality and a dynamic simulation system collaboration in oil pump maintenance. Since there is insufficient research on the joint application of these two technologies, the urgent issue is to prove the effectiveness of such collaboration. For this purpose, this paper provides a description of the system structure, gives a description of the development process of the augmented reality system application and tests the application using Microsoft HoloLens 2.
publications

Evaluation of bulk material behavior control method in technological units using dem. Part 2

Keywords:Bulk materials | Classification of motion modes | DEM-modeling | LSTM | Neural networks | Pelletizing drums | RNN
Date of publication: 2020-01-01
Journal: CIS Iron and Steel Review
Authors: Boikov, A.V, Savelev, R.V, Payor, V.A, Potapov, A.V.
ISSN:24141089

Q1

(Scimago)

The research is dedicated to the development of special devices (capsules) that can be used to control the mining ore behavior in the technological unit in order to increase processes efficiency. In the first part of the article, the choice of the discrete element method for gen-erating various particle trajectories in the unit (drum pelletizer) was substantiated. This part describes the specific technologies that were used to recognize the pelletizing mode. In par-ticular, conversation of paths to sensor readings is implemented using the Matlab Sensor Fusion and Tracking Toolbox. The obtained readings were processed using two neural network classifiers (DNN and LSTM). As a result, stable models for recognizing the pelletizing modes of the unit were obtained. LSTM recognition accuracy is greater than DNN. The developed approach can be used to recognize the operating modes of other technological units. In addition, data on particles trajectories can be used to improve DEM models of technological processes. Future work consists of the capsule physical implementation and testing the recognition algorithm on a real unit.
publications

Increasing the efficiency of Russian uranium mining enterprises in conditions of excessive supply

Date of publication: 2021-06-04
Journal: E3S Web of Conferences
Authors: Dudina, A, Shabalov, M, Nikolaichuk, L.
ISSN:22671242

The article describes the current situation in the global uranium concentrate market, explains the reasons for the formation of an excess amount of finished goods and the subsequent decreasein prices. The authorsevaluated the prospects of using market mechanisms to improve the financial results of Russian uranium mining enterprises. The location of the main mining centers in comparison with the centers of consumption of finished goods, pricing for the products of uranium mining companies, the dynamics of price changes over the past 20 years, the influence of non-market factors on the supply of finished products are analyzed.This study led to the conclusion that the expectation of changes in the market situation is not viable in a long term. The authors outlined the direction to improve the profitability of mining enterprises by introducing technological changes aimed at reducing the cost of the final product.
All publications  
Partner reviews
"Together with the Educational Center of Digital Technologies at St. Petersburg Mining University, we have been collaborating for several years to shape fundamental and applied challenges and ideas for the digitalisation of the mining industry."
"We are very glad to be part of the process that the Educational Center of Digital Technologies at St. Petersburg Mining University is engaged in. We are confident that this centre can become an assembly point for all those new solutions that will bring the mining industry to a new level."
The Committee for the Fuel and Energy Complex of the Leningrad Region expresses its gratitude to you for your support in holding the Festival and organising an informative exposition of the enterprise aimed at attracting the young generation to the fuel and energy complex profession.
Thanks to your efforts, we will be able to further educate young people full of strength and aspirations for knowledge and creativity in the field of energy saving.
We hope for further fruitful co-operation in the field of energy saving.
On behalf of the Ministry of Energy of Russia, we would like to express our gratitude to the WeWatt team of young researchers for the great and necessary work for the industry, done under your leadership on a proactive and pro bono basis.
The results of this study will serve as a basis for further work in this area and will be useful to coal companies in carrying out digital transformation of production facilities, contributing to the effective and successful achievement of the goal.
Institute for Problems of Integrated Subsoil Development, Dmitry Klebanov
Leonid Zhukov, Director of SITECH Division of Zeppelin Rusland Ltd.
Committee for Fuel and Energy Complex, Chairman of the Committee Y.V. Andreev
Ministry of Energy of the Russian Federation
 
 
reviews

Для улучшения работы сайта и его взаимодействия с пользователями мы используем файлы cookie. Продолжая работу с сайтом, Вы разрешаете использование cookie-файлов. Вы всегда можете отключить файлы cookie в настройках Вашего браузера.