fon
Educational Center of Digital Technologies
About center
The speed of scientific and technological progress and the disappearance of certain activities associated with the penetration of automation into all areas of production and management processes are factors of possible growth for enterprises of the future. Digital integration, which integrates scientific directions, people, processes, users and data, will create the conditions for scientific and technological advances and breakthroughs, enabling scientific and economic shifts in related industries and, above all, in the global mineral market. In this regard, in 2018, for the purpose of training, research and development in the field of digital technologies for the enterprises of mineral and fuel and energy complexes, the "Educational Center of Digital Technologies" was established at the Mining University.
Learn more about tasks
point
Directions of scientific research
This direction implies the consideration of intellectual technologies of electric power systems management, including electric power transmission, electric power demand management, digital twins of electric power facilities, digital information models of electrical engineering systems.
Read more   Laboratory  
detail
 
Within the framework of this direction, new methods of monitoring and management based on digital and information technologies are being developed, and information systems are being created to solve mining industry problems.
Read more   Laboratory  
detail
 
This direction is aimed at the development and popularisation of engineering education, improvement of digital competencies of employees and students, as well as implementation of additional professional education programmes for representatives of fuel and energy complex companies.
Read more   Laboratory  
detail
 
This direction implies research and substantiation of complex indicators of efficiency of energy generation, transport and consumption when supplied from traditional and renewable energy sources, taking into account the impact of global challenges and variation of external factors.
Read more   Laboratory  
detail
 
Within the framework of this direction, research is carried out aimed at improving the efficiency of equipment and technological processes of mining, processing and transporting minerals.
Read more   Laboratory  
detail
 
Scientific publications

Production Process Data as a Tool for Digital Transformation of Metallurgical Companies

Keywords:BigData | Correlation coefficient | Data analysis | Data preprocessing | Digitalisation | Production statistics
Date of publication: 2022-01-01
Journal: Lecture Notes in Networks and Systems
Authors: Stoianova, A, Vasilyeva, N.
ISSN:23673389

Q4

(Scimago)

Big Data analysis is becoming an everyday task for companies all over the world, including Russian companies. Due to advances in technology and the reduction in the cost of storage systems, companies can now collect and store large volumes of heterogeneous data. The important step of extracting knowledge and value from such data is a challenge that will eventually be met by all companies seeking to maintain their competitiveness and place in the market. However, companies face several challenges when it comes to collecting, pre-processing, and integrating data into cohesive data sets designed to deliver analytics. In this article, the above problems and possible solutions are illustrated using the example of cleaning, integration, and normalization of data obtained in the measurement of indicators for the Vanyukov melting furnace process. The article considers an approach to the study of metallurgical processes using the analysis of large operational control data sets. Standard methods of processing the data sets of operational process control are used. The correlation analysis of the main process parameters is carried out. The results are interpreted for their further practical application.
publications

Synthetic data generation for steel defect detection and classification using deep learning

Keywords:Computer vision | Machine learning | Steel defect detection | Synthetic data
Date of publication: 2021-07-01
Journal: Symmetry
Authors: Boikov, A, Payor, V, Savelev, R, Kolesnikov, A.
ISSN:20738994

Q2

(Scimago)

The paper presents a methodology for training neural networks for vision tasks on synthe-sized data on the example of steel defect recognition in automated production control systems. The article describes the process of dataset procedural generation of steel slab defects with a symmetrical distribution. The results of training two neural networks Unet and Xception on a generated data grid and testing them on real data are presented. The performance of these neural networks was assessed using real data from the Severstal: Steel Defect Detection set. In both cases, the neural networks showed good results in the classification and segmentation of surface defects of steel workpieces in the image. Dice score on synthetic data reaches 0.62, and accuracy—0.81.

Research of the mine shuttle car VS-30 drive mode

Keywords:Loading drives | Mine shuttle car | Parameters operating mode | Potash ore | Recording complex
Date of publication: 2016-12-01
Journal: ARPN Journal of Engineering and Applied Sciences
Authors: Shishlyannikov, D.I, Lavrenko, S.A.
ISSN:18196608

Q3

(Scimago)

Annotation
The article presents the results of experimental investigations of the magnitude and nature of change loads drive of mine shuttle car VS-30 used to deliver ore to extraction chambers in potash mines. The design of program-recording complex "VATUR" developed by employees of the department "Mining Electrical Engineering" Perm National Research Polytechnic University. In the investigation of operating modes of the drive of self-propelled mine wagons were carried out measurements and recording the instantaneous values of voltage and current of electric motors, calculated values of active and apparent power consumed by the motor pump stations and bottom conveyors of mine shuttle car. Carried out investigations modes of operation and changing loads on the units and details of the tram drive. It is proved that the operation of electric motors of the mine shuttle cars increased characterized by a systematic overload. Outdated system controlling the rotational speed of shafts drive motor gives rise to considerable dynamic loads on components of mechanical transmissions for shuttle cars. Significant loss of time causing the reduction in technical performance longwall set of equipment of potash mines arises during the maneuvering operations and unloading ore from shuttle cars. Based on the analysis of the change of loading drives and statistics of dangerous failures were justified the technical solutions to improve the reliability of mine shuttle car. The recommendations to increase the efficiency of transporting potash in the longwall set of equipment, improving maneuverability of self-propelled cars and reduce downtime for unloading are given.
All publications  
Partner reviews
"Together with the Educational Center of Digital Technologies at St. Petersburg Mining University, we have been collaborating for several years to shape fundamental and applied challenges and ideas for the digitalisation of the mining industry."
"We are very glad to be part of the process that the Educational Center of Digital Technologies at St. Petersburg Mining University is engaged in. We are confident that this centre can become an assembly point for all those new solutions that will bring the mining industry to a new level."
The Committee for the Fuel and Energy Complex of the Leningrad Region expresses its gratitude to you for your support in holding the Festival and organising an informative exposition of the enterprise aimed at attracting the young generation to the fuel and energy complex profession.
Thanks to your efforts, we will be able to further educate young people full of strength and aspirations for knowledge and creativity in the field of energy saving.
We hope for further fruitful co-operation in the field of energy saving.
On behalf of the Ministry of Energy of Russia, we would like to express our gratitude to the WeWatt team of young researchers for the great and necessary work for the industry, done under your leadership on a proactive and pro bono basis.
The results of this study will serve as a basis for further work in this area and will be useful to coal companies in carrying out digital transformation of production facilities, contributing to the effective and successful achievement of the goal.
Institute for Problems of Integrated Subsoil Development, Dmitry Klebanov
Leonid Zhukov, Director of SITECH Division of Zeppelin Rusland Ltd.
Committee for Fuel and Energy Complex, Chairman of the Committee Y.V. Andreev
Ministry of Energy of the Russian Federation
 
 
reviews

Для улучшения работы сайта и его взаимодействия с пользователями мы используем файлы cookie. Продолжая работу с сайтом, Вы разрешаете использование cookie-файлов. Вы всегда можете отключить файлы cookie в настройках Вашего браузера.