fon
Educational Center of Digital Technologies
About center
The speed of scientific and technological progress and the disappearance of certain activities associated with the penetration of automation into all areas of production and management processes are factors of possible growth for enterprises of the future. Digital integration, which integrates scientific directions, people, processes, users and data, will create the conditions for scientific and technological advances and breakthroughs, enabling scientific and economic shifts in related industries and, above all, in the global mineral market. In this regard, in 2018, for the purpose of training, research and development in the field of digital technologies for the enterprises of mineral and fuel and energy complexes, the "Educational Center of Digital Technologies" was established at the Mining University.
Learn more about tasks
point
Directions of scientific research
This direction implies the consideration of intellectual technologies of electric power systems management, including electric power transmission, electric power demand management, digital twins of electric power facilities, digital information models of electrical engineering systems.
Read more   Laboratory  
detail
 
Within the framework of this direction, new methods of monitoring and management based on digital and information technologies are being developed, and information systems are being created to solve mining industry problems.
Read more   Laboratory  
detail
 
This direction is aimed at the development and popularisation of engineering education, improvement of digital competencies of employees and students, as well as implementation of additional professional education programmes for representatives of fuel and energy complex companies.
Read more   Laboratory  
detail
 
This direction implies research and substantiation of complex indicators of efficiency of energy generation, transport and consumption when supplied from traditional and renewable energy sources, taking into account the impact of global challenges and variation of external factors.
Read more   Laboratory  
detail
 
Within the framework of this direction, research is carried out aimed at improving the efficiency of equipment and technological processes of mining, processing and transporting minerals.
Read more   Laboratory  
detail
 
Scientific publications

Evaluation of bulk material behavior control method in technological units using dem. Part 1

Keywords:Bulk materials | Classification of motion modes | DEM-modeling | Neural networks | Pelletizing drums
Date of publication: 2020-01-01
Journal: CIS Iron and Steel Review
Authors: Boikov, A.V, Savelyev, R.V, Payor, V.A, Erokhina, O.O.
ISSN:24141089

Q1

(Scimago)

Nowadays pelletizing drums are widely used in the steel industry. These units are characterized by high endurance and low cost of maintenance. However, use and control of these units in the process of coarsening have a number of issues. For most of the cases pelletizing drums are “black box” and control accuracy can not be estimated exactly. It is explained by low existing theoretical basis of this production process. Particularly it is tied up with the variability of the bulk materials (charges) parameters supplied to the unit. Overcome of this issues can be reached with development of intelligent control systems for drum pelletizing machines. Main requirement for such systems is possibility to level or consider the effect of charges properties variability in control. However, it is necessary to study the behavior of bulk materials inside the units. Visual assessment of pelletization does not allow to evaluate the ongoing physical processes. Development of mathematical and numerical models can help studying the process and take a lot of parameters into account including charges properties and even interaction with water. But the adequacy of the resulting models also has to be clarified using physical devices to record or capture bulk materials behavior inside the units. This research proposes a DEM simulation test of the concept for bulk material behavior control through the recognition of the mixture movement fragments using special capsules. This part is dedicated to the simulation model set up and extracting the particles trajectories for further processing.

Discrete element simulation of powder sintering for spherical particles

Keywords:Ceramics | Discrete element method | Optimal particle size distribution | Refractories | Spatial structure | Structural topology | Structure formation | Tight packing
Date of publication: 2020-01-01
Journal: Key Engineering Materials
Authors: Beloglazov, I.I, Boikov, A.V, Petrov, P.A.
ISSN:16629795

This paper presents a numerical simulation of powder sintering. The numerical model presented in this paper uses the discrete element method, which suggests that the material can be modeled by a large set of discrete elements (particles) of a spherical shape that interact with each other. A methodology has been developed to determine the DEM parameters of bulk materials based on machine vision and a neural network algorithm. The approach is suitable for obtaining the exact values of the DEM parameters of the investigated bulk material by comparing the visual images of the material’s behavior at the experimental stand in reality and in the model. Simulation of sintering requires an introduction of cohesive interaction between particles representing interparticle sintering forces. Numerical sintering studies were supplemented with experimental studies that provided data for calibration and model validation. The experimental results have shown a significant capability of the designed numerical model in modeling sintering processes. Evolution of microstructure and density during sintering have been studied under the laboratory conditions.

Research of the mine shuttle car VS-30 drive mode

Keywords:Loading drives | Mine shuttle car | Parameters operating mode | Potash ore | Recording complex
Date of publication: 2016-12-01
Journal: ARPN Journal of Engineering and Applied Sciences
Authors: Shishlyannikov, D.I, Lavrenko, S.A.
ISSN:18196608

Q3

(Scimago)

Annotation
The article presents the results of experimental investigations of the magnitude and nature of change loads drive of mine shuttle car VS-30 used to deliver ore to extraction chambers in potash mines. The design of program-recording complex "VATUR" developed by employees of the department "Mining Electrical Engineering" Perm National Research Polytechnic University. In the investigation of operating modes of the drive of self-propelled mine wagons were carried out measurements and recording the instantaneous values of voltage and current of electric motors, calculated values of active and apparent power consumed by the motor pump stations and bottom conveyors of mine shuttle car. Carried out investigations modes of operation and changing loads on the units and details of the tram drive. It is proved that the operation of electric motors of the mine shuttle cars increased characterized by a systematic overload. Outdated system controlling the rotational speed of shafts drive motor gives rise to considerable dynamic loads on components of mechanical transmissions for shuttle cars. Significant loss of time causing the reduction in technical performance longwall set of equipment of potash mines arises during the maneuvering operations and unloading ore from shuttle cars. Based on the analysis of the change of loading drives and statistics of dangerous failures were justified the technical solutions to improve the reliability of mine shuttle car. The recommendations to increase the efficiency of transporting potash in the longwall set of equipment, improving maneuverability of self-propelled cars and reduce downtime for unloading are given.
All publications  
Partner reviews
"Together with the Educational Center of Digital Technologies at St. Petersburg Mining University, we have been collaborating for several years to shape fundamental and applied challenges and ideas for the digitalisation of the mining industry."
"We are very glad to be part of the process that the Educational Center of Digital Technologies at St. Petersburg Mining University is engaged in. We are confident that this centre can become an assembly point for all those new solutions that will bring the mining industry to a new level."
The Committee for the Fuel and Energy Complex of the Leningrad Region expresses its gratitude to you for your support in holding the Festival and organising an informative exposition of the enterprise aimed at attracting the young generation to the fuel and energy complex profession.
Thanks to your efforts, we will be able to further educate young people full of strength and aspirations for knowledge and creativity in the field of energy saving.
We hope for further fruitful co-operation in the field of energy saving.
On behalf of the Ministry of Energy of Russia, we would like to express our gratitude to the WeWatt team of young researchers for the great and necessary work for the industry, done under your leadership on a proactive and pro bono basis.
The results of this study will serve as a basis for further work in this area and will be useful to coal companies in carrying out digital transformation of production facilities, contributing to the effective and successful achievement of the goal.
Institute for Problems of Integrated Subsoil Development, Dmitry Klebanov
Leonid Zhukov, Director of SITECH Division of Zeppelin Rusland Ltd.
Committee for Fuel and Energy Complex, Chairman of the Committee Y.V. Andreev
Ministry of Energy of the Russian Federation
 
 
reviews

Для улучшения работы сайта и его взаимодействия с пользователями мы используем файлы cookie. Продолжая работу с сайтом, Вы разрешаете использование cookie-файлов. Вы всегда можете отключить файлы cookie в настройках Вашего браузера.