Cкорость научно-технологического прогресса и исчезновение определенных видов деятельности, связанное с проникновением автоматизации во все сферы производственных и управленческих процессов, являются факторами возможного роста для предприятий будущего. Цифровая интеграция, объединяющая научные направления, кадры, процессы, пользователей и данные, будет создавать условия для научно-технических достижений и прорывов, обеспечивая научно-экономические сдвиги в смежных отраслях и, прежде всего, на глобальном минерально-сырьевом рынке. В этой связи с целью обучения, исследований и разработок в области цифровых технологий для предприятий минерально-сырьевого и топливно-энергетического комплексов в Горном университете реализуется деятельность Кафедры прикладных компетенций в области цифровых технологий.
Подробнее о задачах
Направления научных исследований
Исследование эффективного развития и функционирования энергетических систем на новой технологической основе, принципах энергосбережения, современной электротехнике, ВИЭ
Теория и методология информационного обеспечения объектов недропользования
Создание системы непрерывного обучения и повышения квалификации, направленной на формирование профессиональных цифровых компетенций специалистов, необходимых для обеспечения инновационного развития ТЭК и МСК
Энергосбережение и повышение энергетической эффективности
Переход к передовым цифровым, интеллектуальным производственным технологиям, роботизированным системам на предприятиях МСК и ТЭК
Данное направление предполагает рассмотрение интеллектуальных технологий управления электроэнергетическими системами, включая передачу электрической энергии, управление спросом на электрическую энергию, цифровые двойники объектов электроэнергетики, цифровые информационные модели электротехнических систем.
Читать далее
Лаборатория
В рамках данного направления ведется разработка новых методов мониторинга и управления на основе цифровых и информационных технологий, создание информационных систем для решения задач горной отрасли.
Читать далее
Лаборатория
Данное направление нацелено на развитие и популяризацию инженерного образования, повышение цифровых компетенций сотрудников и обучающихся, а также реализацию программ дополнительного профессионального образования для представителей компаний ТЭК и МСК.
Читать далее
Лаборатория
Данное направление предполагает исследование и обоснование комплексных показателей эффективности генерации, транспорта и потребления энергии при снабжении от традиционных и возобновляемых источников энергии с учетом влияния глобальных вызовов и вариации внешних факторов.
Читать далее
Лаборатория
В рамках данного направления проводятся исследования, направленные на повышение эффективности оборудования и технологических процессов добычи, переработки и транспортировки полезных ископаемых.
Читать далее
Лаборатория
Проекты
Научные публикации
Evaluation of bulk material behavior control method in technological units using dem. Part 2
Ключевые слова:Bulk materials | Classification of motion modes | DEM-modeling | LSTM | Neural networks | Pelletizing drums | RNN
Дата публикации: 2020-01-01
Журнал: CIS Iron and Steel Review
Авторы: Boikov, A.V, Savelev, R.V, Payor, V.A, Potapov, A.V.
ISSN:24141089
Q1
(Scimago)
The research is dedicated to the development of special devices (capsules) that can be used to control the mining ore behavior in the technological unit in order to increase processes efficiency. In the first part of the article, the choice of the discrete element method for gen-erating various particle trajectories in the unit (drum pelletizer) was substantiated. This part describes the specific technologies that were used to recognize the pelletizing mode. In par-ticular, conversation of paths to sensor readings is implemented using the Matlab Sensor Fusion and Tracking Toolbox. The obtained readings were processed using two neural network classifiers (DNN and LSTM). As a result, stable models for recognizing the pelletizing modes of the unit were obtained. LSTM recognition accuracy is greater than DNN. The developed approach can be used to recognize the operating modes of other technological units. In addition, data on particles trajectories can be used to improve DEM models of technological processes. Future work consists of the capsule physical implementation and testing the recognition algorithm on a real unit.
Augmented reality technology as a tool to improve the efficiency of maintenance and analytics of the operation of electromechanical equipment
Дата публикации: 2021-02-08
Журнал: Journal of Physics: Conference Series
Авторы: Koteleva, N.I, Zhukovskiy, Y.L, Valnev, V.
ISSN:17426596
Q4
(Scimago)
Today the industry is facing a shortage of skilled workers and an aging workforce, which will eventually lead to a loss of knowledge. But augmented reality technology can connect field workers with experts who are able to provide remote guidance in real time. The subsequent advantage is that the information obtained by AR devices can be used as accumulated successful experience in the future, which facilitates decision-making in specific business processes of the company. With AR, employees gain experience and skills much faster. This paper shows the application of augmented reality technology in the maintenance of electromechanical equipment. The main functions of the augmented reality system for servicing electrical equipment are presented, the solution to the problem of integrating an augmented reality software application with existing automation systems is shown, and the methods of interaction of the developed software module with third-party modules, for example, various analytical modules, etc. are described.
Modeling of heavy-oil flow with regard to their rheological properties
Ключевые слова:ANSYS | Flow model | Heavy oil | Oil-field pipeline | Rheology
Дата публикации: 2021-01-01
Журнал: Energies
Авторы: Beloglazov, I, Morenov, V, Leusheva, E, Gudmestad, O.T.
ISSN:19961073
Q2
(Scimago)
With the depletion of traditional energy resources, the share of heavy-oil production has been increasing recently. According to some estimates, their reserves account for 80% of the world's oil resources. Costs for extraction of heavy oil and natural bitumen are 3-4 times higher than the costs of extracting light oil, which is due not only to higher density and viscosity indicators but also to insufficient development of equipment and technologies for the extraction, transportation, and processing of such oils. Currently, a single pipeline system is used to pump both light and heavy oil. Therefore, it is necessary to take into account the features of the heavy-oil pumping mode. This paper presents mathematical models of heavy-oil flow in oil-field pipelines. The rheological properties of several heavy-oil samples were determined by experiments. The dependencies obtained were used as input data for a simulation model using computational fluid dynamics (CFD) methods. The modeling condition investigates the range of shear rates up to 300 s−1. At the same time, results up to 30 s−1 are considered in the developed computational models. The methodology of the research is, thus, based on a CFD approach with experimental confirmation of the results obtained. The proposed rheological flow model for heavy oil reflects the dynamics of the internal structural transformation during petroleum transportation. The validity of the model is confirmed by a comparison between the theoretical and the obtained experimental results. The results of the conducted research can be considered during the selection of heavy-oil treatment techniques for its efficient transportation.
Отзывы партнёров
"Together with the Educational Center of Digital Technologies at St. Petersburg Mining University, we have been collaborating for several years to shape fundamental and applied challenges and ideas for the digitalisation of the mining industry."
"We are very glad to be part of the process that the Educational Center of Digital Technologies at St. Petersburg Mining University is engaged in. We are confident that this centre can become an assembly point for all those new solutions that will bring the mining industry to a new level."
The Committee for the Fuel and Energy Complex of the Leningrad Region expresses its gratitude to you for your support in holding the Festival and organising an informative exposition of the enterprise aimed at attracting the young generation to the fuel and energy complex profession.
Thanks to your efforts, we will be able to further educate young people full of strength and aspirations for knowledge and creativity in the field of energy saving.
We hope for further fruitful co-operation in the field of energy saving.
Thanks to your efforts, we will be able to further educate young people full of strength and aspirations for knowledge and creativity in the field of energy saving.
We hope for further fruitful co-operation in the field of energy saving.
On behalf of the Ministry of Energy of Russia, we would like to express our gratitude to the WeWatt team of young researchers for the great and necessary work for the industry, done under your leadership on a proactive and pro bono basis.
The results of this study will serve as a basis for further work in this area and will be useful to coal companies in carrying out digital transformation of production facilities, contributing to the effective and successful achievement of the goal.
The results of this study will serve as a basis for further work in this area and will be useful to coal companies in carrying out digital transformation of production facilities, contributing to the effective and successful achievement of the goal.
Institute for Problems of Integrated Subsoil Development, Dmitry Klebanov
Leonid Zhukov, Director of SITECH Division of Zeppelin Rusland Ltd.
Committee for Fuel and Energy Complex, Chairman of the Committee Y.V. Andreev
Ministry of Energy of the Russian Federation
Кафедра в лицах

Сержан Сергей Леонидович
доцент, руководитель направления горно-транспортных систем
к.т.н.

Николайчук Любовь Анатольевна
Заведующая кафедрой прикладных компетенций в области цифровых технологий
к.э.н. / доцент

Булдыско Александра Дмитриевна
ассистент
к.т.н.

Чупин Станислав Александрович
доцент, руководитель направления компьютерного моделирования
к.т.н.

Королёв Николай Александрович
доцент, руководитель направления энергетических и электромеханических систем
к.т.н.
Обратная связь







